Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Med Rev (2021) ; 3(3): 200-204, 2023 Jun.
Article En | MEDLINE | ID: mdl-37789956

The biomedical literature is a vast and invaluable resource for biomedical research. Integrating knowledge from the literature with biomedical data can help biological studies and the clinical decision-making process. Efforts have been made to gather information from the biomedical literature and create biomedical knowledge bases, such as KEGG and Reactome. However, manual curation remains the primary method to retrieve accurate biomedical entities and relationships. Manual curation becomes increasingly challenging and costly as the volume of biomedical publications quickly grows. Fortunately, recent advancements in Artificial Intelligence (AI) technologies offer the potential to automate the process of curating, updating, and integrating knowledge from the literature. Herein, we highlight the AI capabilities to aid in mining knowledge and building the knowledge base from the biomedical literature.

2.
Mol Cancer Ther ; 22(11): 1290-1303, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37643767

DLBCL are aggressive, rapidly proliferating tumors that critically depend on the ATF4-mediated integrated stress response (ISR) to adapt to stress caused by uncontrolled growth, such as hypoxia, amino acid deprivation, and accumulation of misfolded proteins. Here, we show that ISR hyperactivation is a targetable liability in DLBCL. We describe a novel class of compounds represented by BTM-3528 and BTM-3566, which activate the ISR through the mitochondrial protease OMA1. Treatment of tumor cells with compound leads to OMA1-dependent cleavage of DELE1 and OPA1, mitochondrial fragmentation, activation of the eIF2α-kinase HRI, cell growth arrest, and apoptosis. Activation of OMA1 by BTM-3528 and BTM-3566 is mechanistically distinct from inhibitors of mitochondrial electron transport, as the compounds induce OMA1 activity in the absence of acute changes in respiration. We further identify the mitochondrial protein FAM210B as a negative regulator of BTM-3528 and BTM-3566 activity. Overexpression of FAM210B prevents both OMA1 activation and apoptosis. Notably, FAM210B expression is nearly absent in healthy germinal center B-lymphocytes and in derived B-cell malignancies, revealing a fundamental molecular vulnerability which is targeted by BTM compounds. Both compounds induce rapid apoptosis across diverse DLBCL lines derived from activated B-cell, germinal center B-cell, and MYC-rearranged lymphomas. Once-daily oral dosing of BTM-3566 resulted in complete regression of xenografted human DLBCL SU-DHL-10 cells and complete regression in 6 of 9 DLBCL patient-derived xenografts. BTM-3566 represents a first-of-its kind approach of selectively hyperactivating the mitochondrial ISR for treating DLBCL.


Lymphoma, B-Cell , Peptide Hydrolases , Humans , Peptide Hydrolases/metabolism , GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Mitochondrial Proteins , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism
3.
Cancers (Basel) ; 13(24)2021 Dec 14.
Article En | MEDLINE | ID: mdl-34944904

Breast cancer (BC) is the leading cause of death among female patients with cancer. Patients with triple-negative breast cancer (TNBC) have the lowest survival rate. TNBC has substantial heterogeneity within the BC population. This study utilized our novel patient stratification and drug repositioning method to find subgroups of BC patients that share common genetic profiles and that may respond similarly to the recommended drugs. After further examination of the discovered patient subgroups, we identified five homogeneous druggable TNBC subgroups. A drug repositioning algorithm was then applied to find the drugs with a high potential for each subgroup. Most of the top drugs for these subgroups were chemotherapy used for various types of cancer, including BC. After analyzing the biological mechanisms targeted by these drugs, ferroptosis was the common cell death mechanism induced by the top drugs in the subgroups with neoplasm subdivision and race as clinical variables. In contrast, the antioxidative effect on cancer cells was the common targeted mechanism in the subgroup of patients with an age less than 50. Literature reviews were used to validate our findings, which could provide invaluable insights to streamline the drug repositioning process and could be further studied in a wet lab setting and in clinical trials.

4.
Pigment Cell Melanoma Res ; 33(6): 850-868, 2020 11.
Article En | MEDLINE | ID: mdl-32558263

Biosynthesis and degradation of heme, an iron-bound protoporphyrin molecule utilized by a wide variety of metabolic processes, are tightly regulated. Two closely related enzymes, heme oxygenase 1 (HMOX1) and heme oxygenase 2 (HMOX2), degrade free heme to produce carbon monoxide, Fe2+ , and biliverdin. HMOX1 expression is controlled via the transcriptional activator, NFE2L2, and the transcriptional repressor, Bach1. Transcription of HMOX1 and other NFE2L2-dependent genes is increased in response to electrophilic and reactive oxygen species. Many tumor-derived cell lines have elevated levels of NFE2L2. Elevated expression of NFE2L2-dependent genes contributes to tumor growth and acquired resistance to therapies. Here, we report a novel role for heme oxygenase activity in melanosphere formation by human melanoma-derived cell lines. Transcriptional induction of HMOX1 through derepression of Bach1 or transcriptional activation of HMOX2 by oncogenic B-RafV600E results in increased melanosphere formation. Genetic ablation of HMOX1 diminishes melanosphere formation. Further, inhibition of heme oxygenase activity with tin protoporphyrin markedly reduces melanosphere formation driven by either Bach1 derepression or B-RafV600E expression. Global transcriptome analyses implicate genes involved in focal adhesion and extracellular matrix interactions in melanosphere formation.


Heme Oxygenase (Decyclizing)/metabolism , Melanocytes/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Spheroids, Cellular/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Gene Expression Regulation/drug effects , HEK293 Cells , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Heme Oxygenase (Decyclizing)/genetics , Humans , Male , Melanocytes/drug effects , Mutation/genetics , NF-E2-Related Factor 2/metabolism , Oncogenes , Proto-Oncogene Mas , Protoporphyrins/pharmacology , Spheroids, Cellular/drug effects
5.
Viruses ; 11(7)2019 07 17.
Article En | MEDLINE | ID: mdl-31319455

Moloney leukemia virus 10 (MOV10) is an RNA helicase that has been shown to affect the replication of several viruses. The effect of MOV10 on Hepatitis B virus (HBV) infection is not known and its role on the replication of this virus is poorly understood. We investigated the effect of MOV10 down-regulation and MOV10 over-expression on HBV in a variety of cell lines, as well as in an infection system using a replication competent virus. We report that MOV10 down-regulation, using siRNA, shRNA, and CRISPR/Cas9 gene editing technology, resulted in increased levels of HBV DNA, HBV pre-genomic RNA, and HBV core protein. In contrast, MOV10 over-expression reduced HBV DNA, HBV pre-genomic RNA, and HBV core protein. These effects were consistent in all tested cell lines, providing strong evidence for the involvement of MOV10 in the HBV life cycle. We demonstrated that MOV10 does not interact with HBV-core. However, MOV10 binds HBV pgRNA and this interaction does not affect HBV pgRNA decay rate. We conclude that the restriction of HBV by MOV10 is mediated through effects at the level of viral RNA.


Hepatitis B virus/physiology , Hepatitis B/virology , Host-Pathogen Interactions , Microbial Interactions , Moloney murine leukemia virus/physiology , Virus Replication , Animals , Cell Line , Cells, Cultured , Gene Expression Regulation, Viral , Humans , Mice , Protein Binding , RNA , RNA Helicases/metabolism , RNA, Viral , Viral Proteins/metabolism
6.
Biochem Mol Biol Educ ; 47(4): 408-416, 2019 07.
Article En | MEDLINE | ID: mdl-30985963

We describe an advanced, inquiry driven undergraduate course in Cancer Biology that combines faculty lectures typical of undergraduate courses with literature-driven discussions typical of graduate courses. As a capstone course, one goal of this course is to integrate knowledge from previous coursework in physiology, cell and molecular biology, genetics, and chemistry, so that students acquire a state-of-the-art understanding of cancer and cancer treatment. A related goal is for students to learn, from the primary literature, how science is performed and how new scientific knowledge is used to improve cancer treatment. We report on the development of this course and the methods used to accomplish the course goals. We present the results of a 5-year survey that provides a detailed picture of the demographics of the class and demonstrates that the course results in improved understanding of both cancer biology and how science is performed. Student responses to our survey strongly support the use of original literature as a teaching tool. We suggest that incorporation of primary literature into advanced undergraduate science courses is an effective approach for improving scientific literacy. © 2019 International Union of Biochemistry and Molecular Biology, 47(4):408-416, 2019.


Curriculum , Molecular Biology/education , Neoplasms/genetics , Humans , Students , Universities
7.
J Biol Chem ; 294(21): 8640-8652, 2019 05 24.
Article En | MEDLINE | ID: mdl-30962285

Histone deacetylase 5 (HDAC5) and HDAC9 are class IIa HDACs that function as signal-responsive repressors of the epigenetic program for pathological cardiomyocyte hypertrophy. The conserved deacetylase domains of HDAC5 and HDAC9 are not required for inhibition of cardiac hypertrophy. Thus, the biological function of class IIa HDAC catalytic activity in the heart remains unknown. Here we demonstrate that catalytic activity of HDAC5, but not HDAC9, suppresses mitochondrial reactive oxygen species generation and subsequent induction of NF-E2-related factor 2 (NRF2)-dependent antioxidant gene expression in cardiomyocytes. Treatment of cardiomyocytes with TMP195 or TMP269, which are selective class IIa HDAC inhibitors, or shRNA-mediated knockdown of HDAC5 but not HDAC9 leads to stimulation of NRF2-mediated transcription in a reactive oxygen species-dependent manner. Conversely, ectopic expression of catalytically active HDAC5 decreases cardiomyocyte oxidative stress and represses NRF2 activation. These findings establish a role of the catalytic domain of HDAC5 in the control of cardiomyocyte redox homeostasis and define TMP195 and TMP269 as a novel class of NRF2 activators that function by suppressing the enzymatic activity of an epigenetic regulator.


Gene Expression Regulation, Enzymologic , Histone Deacetylases/biosynthesis , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Animals , Benzamides/pharmacology , HEK293 Cells , Histone Deacetylases/genetics , Humans , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Myocytes, Cardiac/cytology , NF-E2-Related Factor 2/genetics , Oxadiazoles/pharmacology , Protein Domains , Rats , Reactive Oxygen Species/metabolism , Repressor Proteins/biosynthesis , Repressor Proteins/genetics
8.
Article Zh | WPRIM | ID: wpr-753257

To fractionate and identify polyphenols from Guazuma ulmifolia Lam. leaves, and to explore their antioxidant, 5-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitory, and Nrf2 modulatory activities. Methods: The 1,1-diphenyl-2-picrylhydrazyl assay was used to evaluate the antioxidant activity of a polyphenolic fraction of the extract of Guazuma ulmifolia Lam. leaves. THP-1 gene reporter cell lines constructed with a transcriptional response element specific for Nrf2 and a minimal promoter for the firefly luciferase–green fluorescent protein transgene were used to determine the effect of the polyphenolic fraction on the Nrf2 signaling pathway. Furthermore, an assay of HMG-CoA reductase inhibitory activity was performed by using a commercial enzyme kit. Polyphenolic compounds were identified by liquid chromatography-tandem mass spectrometry. Results: The polyphenolic fraction showed fairly strong antioxidant activity [IC50 = (14.90 ± 4.70) μg/mL] and inhibited HMG-CoA reductase activity by 69.10%, which was slightly lower than that by pravastatin (84.37%) and quercetin (84.25%). Additionally, the polyphenolic fraction activated the Nrf2 antioxidant signaling pathway at 500 μg/mL. Eleven subfractions resulting from the column chromatography separation of the polyphenolic fraction also showed relatively strong antioxidant activities (IC50: 17.46–217.14 μg/mL). The subfraction (F6) stimulated the Nrf2 signaling pathway and had HMG-CoA reductase inhibitory activity (65.43%). Moreover, the subfraction contained two main flavonoids: quercetin and quercimeritrin. Conclusions: The polyphenolic fraction of Guazuma ulmifolia could induce antioxidant genes via the Nrf2/antioxidant regulatory elements pathway, and is a promising candidate for an inhibitor of HMG-CoA reductase.

9.
Methods Enzymol ; 607: 353-372, 2018.
Article En | MEDLINE | ID: mdl-30149865

Phosphoglycerate mutase family member 5 (PGAM5) is a serine/threonine phosphatase that has been localized to both inner and outer mitochondrial membranes. PGAM5 has been suggested to regulate multiple aspects of mitochondrial dynamics, including fission/fusion and mitophagy, through phosphatase-dependent and phosphatase-independent mechanisms. Understanding how the phosphatase activity of PGAM5 is regulated will provide new insight into signaling mechanisms that link changes in cell physiology with mitochondrial function. In this chapter, we describe methods for obtaining both multimeric and dimeric complexes of PGAM5 and for characterizing their kinetic properties. The ability to purify different PGAM5 complexes and to characterize their kinetic properties will enable detailed biophysical studies of the quaternary structures of the various PGAM5-containing complexes. The phosphatase activity of different PGAM5 complexes varies over three orders of magnitude. We suggest that the ability to generate PGAM5 complexes that have a wide range of phosphatase activities will facilitate screens to identify small molecules that modulate the phosphatase activity of PGAM5.


Enzyme Assays/methods , Mitochondrial Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Multimerization , Allosteric Regulation , Allosteric Site/genetics , Chromatography, Gel/instrumentation , Chromatography, Gel/methods , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Enzyme Assays/instrumentation , Kinetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/isolation & purification , Phosphopeptides/chemical synthesis , Phosphopeptides/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
10.
Article En | MEDLINE | ID: mdl-28314621

Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A2 (cPLA2), DHA is linked to action of the Ca2+-independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke.


Aging/metabolism , Brain/metabolism , Docosahexaenoic Acids/metabolism , Animals , Dietary Supplements , Docosahexaenoic Acids/therapeutic use , Group VI Phospholipases A2/metabolism , Humans , Mental Disorders/diet therapy , Mental Disorders/metabolism , Neuroprotective Agents/metabolism
11.
Neurochem Int ; 97: 49-56, 2016 07.
Article En | MEDLINE | ID: mdl-27166148

The increase in oxidative stress and inflammatory responses associated with neurodegenerative diseases has drawn considerable attention towards understanding the transcriptional signaling pathways involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Nrf2 (Nuclear Factor Erythroid 2-like 2). Our recent studies with immortalized murine microglial cells (BV-2) demonstrated effects of botanical polyphenols to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) and enhance Nrf2-mediated antioxidant responses (Sun et al., 2015). In this study, an immortalized rat astrocyte (DI TNC1) cell line expressing a luciferase reporter driven by the NF-κB or the Nrf2/Antioxidant Response Element (ARE) promoter was used to assess regulation of these two pathways by phytochemicals such as quercetin, rutin, cyanidin, cyanidin-3-O-glucoside, as well as botanical extracts from Withania somnifera (Ashwagandha), Sutherlandia frutescens (Sutherlandia) and Euterpe oleracea (Açaí). Quercetin effectively inhibited LPS-induced NF-κB reporter activity and stimulated Nrf2/ARE reporter activity in DI TNC1 astrocytes. Cyanidin and the glycosides showed similar effects but only at much higher concentrations. All three botanical extracts effectively inhibited LPS-induced NF-κB reporter activity. These extracts were capable of enhancing ARE activity by themselves and further enhanced ARE activity in the presence of LPS. Quercetin and botanical extracts induced Nrf2 and HO-1 protein expression. Interestingly, Ashwagandha extract was more active in inducing Nrf2 and HO-1 expression in DI TNC1 astrocytes as compared to Sutherlandia and Açaí extracts. In summary, this study demonstrated NF-kB and Nrf2/ARE promoter activities in DI TNC1 astrocytes, and further showed differences in ability for specific botanical polyphenols and extracts to down-regulate LPS-induced NF-kB and up-regulate the NRF2/ARE activities in these cells.


Antioxidant Response Elements/physiology , Astrocytes/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Animals , Antioxidant Response Elements/drug effects , Astrocytes/drug effects , Cell Line, Transformed , Cells, Cultured , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Rats
12.
Neuromolecular Med ; 18(3): 241-52, 2016 Sep.
Article En | MEDLINE | ID: mdl-27209361

Withania somnifera (L.) Dunal, commonly known as Ashwagandha, has been used in Ayurvedic medicine for promoting health and quality of life. Recent clinical trials together with experimental studies indicated significant neuroprotective effects of Ashwagandha and its constituents. This study is aimed to investigate anti-inflammatory and anti-oxidative properties of this botanical and its two withanolide constituents, namely, Withaferin A and Withanolide A, using the murine immortalized BV-2 microglial cells. Ashwagandha extracts not only effectively inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production in BV-2 cells, but also stimulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, leading to induction of heme oxygenase-1 (HO-1), both in the presence and absence of LPS. Although the withanolides were also capable of inhibiting LPS-induced NO production and stimulating Nrf2/HO-1 pathway, Withaferin A was tenfold more effective than Withanolide A. In serum-free culture, LPS can also induce production of long thin processes (filopodia) between 4 and 8 h in BV-2 cells. This morphological change was significantly suppressed by Ashwagandha and both withanolides at concentrations for suppressing LPS-induced NO production. Taken together, these results suggest an immunomodulatory role for Ashwagandha and its withanolides, and their ability to suppress oxidative and inflammatory responses in microglial cells by simultaneously down-regulating the NF-kB and upregulating the Nrf2 pathways.


Gene Expression Regulation/drug effects , Microglia/drug effects , Withania/chemistry , Withanolides/pharmacology , Animals , Cell Line , Immunologic Factors/pharmacology , Mice , NF-E2-Related Factor 2/genetics , NF-kappa B/genetics , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology
13.
PLoS One ; 10(10): e0141509, 2015.
Article En | MEDLINE | ID: mdl-26505893

A large group of flavonoids found in fruits and vegetables have been suggested to elicit health benefits due mainly to their anti-oxidative and anti-inflammatory properties. Recent studies with immune cells have demonstrated inhibition of these inflammatory responses through down-regulation of the pro-inflammatory pathway involving NF-κB and up-regulation of the anti-oxidative pathway involving Nrf2. In the present study, the murine BV-2 microglial cells were used to compare anti-inflammatory activity of quercetin and cyanidin, two flavonoids differing by their alpha, beta keto carbonyl group. Quercetin was 10 folds more potent than cyanidin in inhibition of lipopolysaccharide (LPS)-induced NO production as well as stimulation of Nrf2-induced heme-oxygenase-1 (HO-1) protein expression. In addition, quercetin demonstrated enhanced ability to stimulate HO-1 protein expression when cells were treated with LPS. In an attempt to unveil mechanism(s) for quercetin to enhance Nrf2/HO-1 activity under endotoxic stress, results pointed to an increase in phospho-p38MAPK expression upon addition of quercetin to LPS. In addition, pharmacological inhibitors for phospho-p38MAPK and MEK1/2 for ERK1/2 further showed that these MAPKs target different sites of the Nrf2 pathway that regulates HO-1 expression. However, inhibition of LPS-induced NO by quercetin was not fully reversed by TinPPIX, a specific inhibitor for HO-1 activity. Taken together, results suggest an important role of quercetin to regulate inflammatory responses in microglial cells and its ability to upregulate HO-1 against endotoxic stress through involvement of MAPKs.


Heme Oxygenase-1/biosynthesis , Inflammation/drug therapy , NF-E2-Related Factor 2/metabolism , Nitric Oxide/biosynthesis , Quercetin/administration & dosage , Animals , Gene Expression Regulation/drug effects , Heme Oxygenase-1/metabolism , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/metabolism , Mice , Microglia/drug effects , Microglia/metabolism , NF-E2-Related Factor 2/biosynthesis , NF-E2-Related Factor 2/genetics , NF-kappa B/metabolism , Nitric Oxide/metabolism , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/genetics
14.
PLoS One ; 10(4): e0125000, 2015.
Article En | MEDLINE | ID: mdl-25902288

RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner--a multi-level bioinformatics protocol and pipeline--has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html.


Computational Biology/methods , Data Mining , Gene Expression Profiling , Sequence Analysis, RNA/methods , Software , Statistics as Topic , Animals , Arabidopsis/genetics , Databases, Genetic , Drosophila melanogaster/genetics , Gene Regulatory Networks , Genome , Humans , Internet , Mice
15.
PLoS One ; 9(11): e113531, 2014.
Article En | MEDLINE | ID: mdl-25420111

Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.


Garlic/chemistry , Lipopolysaccharides/pharmacology , Microglia/drug effects , Plant Extracts/pharmacology , Proteome/analysis , Proteomics , Animals , Anti-Inflammatory Agents/pharmacology , Blotting, Western , Cell Line , Dipeptides/chemistry , Dipeptides/pharmacology , Dose-Response Relationship, Drug , Electrophoresis, Gel, Two-Dimensional , Mice , Microglia/cytology , Microglia/metabolism , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Signal Transduction/drug effects , Tandem Mass Spectrometry , Time Factors
16.
PLoS One ; 9(7): e101044, 2014.
Article En | MEDLINE | ID: mdl-25019514

Oxidative stress is generated by reactive oxygen species (ROS) produced in response to metabolic activity and environmental factors. Increased oxidative stress is associated with the pathophysiology of a broad spectrum of inflammatory diseases. Cellular response to excess ROS involves the induction of antioxidant response element (ARE) genes under control of the transcriptional activator Nrf2 and the transcriptional repressor Bach1. The development of synthetic small molecules that activate the protective anti-oxidant response network is of major therapeutic interest. Traditional small molecules targeting ARE-regulated gene activation (e.g., bardoxolone, dimethyl fumarate) function by alkylating numerous proteins including Keap1, the controlling protein of Nrf2. An alternative is to target the repressor Bach1. Bach1 has an endogenous ligand, heme, that inhibits Bach1 binding to ARE, thus allowing Nrf2-mediated gene expression including that of heme-oxygenase-1 (HMOX1), a well described target of Bach1 repression. In this report, normal human lung fibroblasts were used to screen a collection of synthetic small molecules for their ability to induce HMOX1. A class of HMOX1-inducing compounds, represented by HPP-4382, was discovered. These compounds are not reactive electrophiles, are not suppressed by N-acetyl cysteine, and do not perturb either ROS or cellular glutathione. Using RNAi, we further demonstrate that HPP-4382 induces HMOX1 in an Nrf2-dependent manner. Chromatin immunoprecipitation verified that HPP-4382 treatment of NHLF cells reciprocally coordinated a decrease in binding of Bach1 and an increase of Nrf2 binding to the HMOX1 E2 enhancer. Finally we show that HPP-4382 can inhibit Bach1 activity in a reporter assay that measures transcription driven by the human HMOX1 E2 enhancer. Our results suggest that HPP-4382 is a novel activator of the antioxidant response through the modulation of Bach1 binding to the ARE binding site of target genes.


Antioxidant Response Elements , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/metabolism , Fanconi Anemia Complementation Group Proteins/antagonists & inhibitors , Fanconi Anemia Complementation Group Proteins/metabolism , Heme Oxygenase-1/genetics , Transcriptional Activation , Chromatin Immunoprecipitation , Fibroblasts/drug effects , Heme/metabolism , Heme Oxygenase-1/metabolism , Humans , Oxidative Stress
17.
J Biol Chem ; 289(36): 25137-48, 2014 Sep 05.
Article En | MEDLINE | ID: mdl-25012655

Phosphoglycerate mutase 5 (PGAM5) is an atypical mitochondrial Ser/Thr phosphatase that modulates mitochondrial dynamics and participates in both apoptotic and necrotic cell death. The mechanisms that regulate the phosphatase activity of PGAM5 are poorly understood. The C-terminal phosphoglycerate mutase domain of PGAM5 shares homology with the catalytic domains found in other members of the phosphoglycerate mutase family, including a conserved histidine that is absolutely required for catalytic activity. However, this conserved domain is not sufficient for maximal phosphatase activity. We have identified a highly conserved amino acid motif, WDXNWD, located within the unique N-terminal region, which is required for assembly of PGAM5 into large multimeric complexes. Alanine substitutions within the WDXNWD motif abolish the formation of multimeric complexes and markedly reduce phosphatase activity of PGAM5. A peptide containing the WDXNWD motif dissociates the multimeric complex and reduces but does not fully abolish phosphatase activity. Addition of the WDXNWD-containing peptide in trans to a mutant PGAM5 protein lacking the WDXNWD motif markedly increases phosphatase activity of the mutant protein. Our results are consistent with an intermolecular allosteric regulation mechanism for the phosphatase activity of PGAM5, in which the assembly of PGAM5 into multimeric complexes, mediated by the WDXNWD motif, results in maximal activation of phosphatase activity. Our results suggest the possibility of identifying small molecules that function as allosteric regulators of the phosphatase activity of PGAM5.


Amino Acid Motifs/genetics , Conserved Sequence/genetics , Phosphoric Monoester Hydrolases/genetics , Protein Multimerization/genetics , Allosteric Regulation , Amino Acid Sequence , Animals , COS Cells , Cell Line , Cells, Cultured , Chlorocebus aethiops , Chromatography, Gel , Enzyme Activation , Immunoblotting , Kinetics , Mice , Microscopy, Fluorescence , Models, Molecular , Mutagenesis, Site-Directed , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphoprotein Phosphatases , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Protein Binding , Protein Structure, Tertiary , Substrate Specificity
18.
PLoS One ; 8(12): e85494, 2013.
Article En | MEDLINE | ID: mdl-24376882

Genetically modified hematopoietic progenitors represent an important testing platform for a variety of cell-based therapies, pharmaceuticals, diagnostics and other applications. Stable expression of a transfected gene of interest in the cells is often obstructed by its silencing. DNA transposons offer an attractive non-viral alternative of transgene integration into the host genome, but their broad applicability to leukocytes and other "transgene unfriendly" cells has not been fully demonstrated. Here we assess stability of piggyBac transposon-based reporter expression in murine prostate adenocarcinoma TRAMP-C2, human monocyte THP-1 and erythroleukemia K562 cell lines, along with macrophages and dendritic cells (DCs) that have differentiated from the THP-1 transfects. The most efficient and stable reporter activity was observed for combinations of the transposon inverted terminal repeats and one 5'- or two cHS4 core insulators flanking a green fluorescent protein reporter construct, with no detectable silencing over 10 months of continuous cell culture in absence of any selective pressure. In monocytic THP-1 cells, the functional activity of luciferase reporters for NF-κB, Nrf2, or HIF-1α has not decreased over time and was retained following differentiation into macrophages and DCs, as well. These results imply pB as a versatile tool for gene integration in monocytic cells in general, and as a convenient access route to DC-based signaling pathway reporters suitable for high-throughput assays, in particular.


DNA Transposable Elements/genetics , Gene Transfer Techniques , Genes, Reporter/genetics , Green Fluorescent Proteins/metabolism , Hematopoietic Stem Cells/metabolism , High-Throughput Screening Assays/methods , Animals , Cell Line, Tumor , Humans , Luciferases , Mice
19.
PLoS One ; 7(11): e47366, 2012.
Article En | MEDLINE | ID: mdl-23144817

Gbx2 encodes a DNA-binding transcription factor that plays pivotal roles during embryogenesis. Gain-and loss-of-function studies in several vertebrate species have demonstrated a requirement for Gbx2 in development of the anterior hindbrain, spinal cord, inner ear, heart, and neural crest cells. However, the target genes through which GBX2 exerts its effects remain obscure. Using chromatin immunoprecipitation coupled with direct sequencing (ChIP-Seq) analysis in a human prostate cancer cell line, we identified cis-regulatory elements bound by GBX2 to provide insight into its direct downstream targets. The analysis revealed more than 286 highly significant candidate target genes, falling into various functional groups, of which 51% are expressed in the nervous system. Several of the top candidate genes include EEF1A1, ROBO1, PLXNA4, SLIT3, NRP1, and NOTCH2, as well as genes associated with the Usher syndrome, PCDH15 and USH2A, and are plausible candidates contributing to the developmental defects in Gbx2(-/-) mice. We show through gel shift analyses that sequences within the promoter or introns of EEF1A1, ROBO1, PCDH15, USH2A and NOTCH2, are directly bound by GBX2. Consistent with these in vitro results, analyses of Gbx2(-/-) embryos indicate that Gbx2 function is required for migration of Robo1-expressing neural crest cells out of the hindbrain. Furthermore, we show that GBX2 activates transcriptional activity through the promoter of EEF1A1, suggesting that GBX2 could also regulate gene expression indirectly via EEF1A. Taken together, our studies show that GBX2 plays a dynamic role in development and diseases.


Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Peptide Elongation Factor 1/genetics , Transcriptional Activation , Usher Syndromes/genetics , Amino Acid Sequence , Animals , Base Sequence , Cell Line, Tumor , Computational Biology , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Humans , Male , Mice , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Peptide Elongation Factor 1/metabolism , Promoter Regions, Genetic , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Sequence Alignment , Transfection , Roundabout Proteins
...